Context-Free Grammars

A Motivating Question

python3

Mad Libs for Arithmetic



This only lets us make arithmetic expressions of the form (Int Op Int) Op Int Op Int.

What about arithmetic expressions that don't follow this pattern?

Recursive Mad Libs

What can an arithmetic expression be?

int A single number.

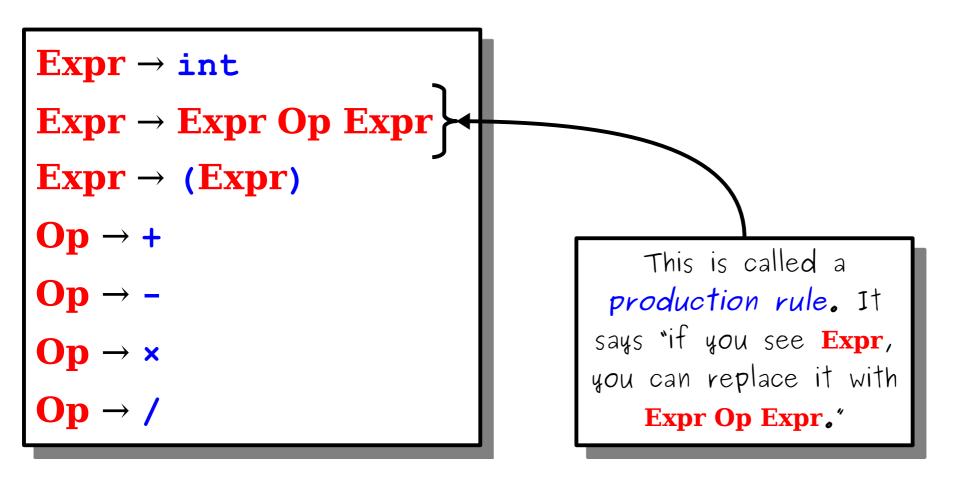
Expr Op Expr Two expressions joined by an operator.

(Expr) A parenthesized expression.

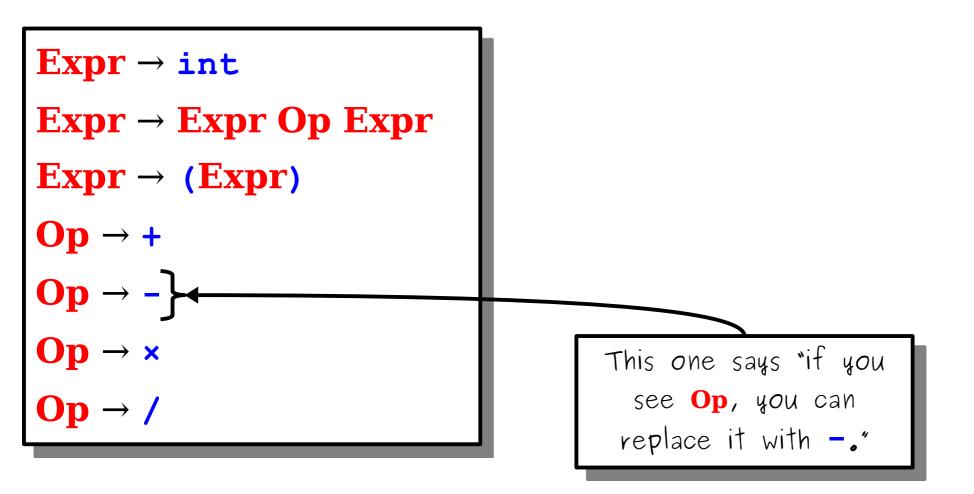
A *context-free grammar* (or *CFG*) is a recursive set of rules that define a language.

(There's a bunch of specific requirements about what those rules can be; more on that in a bit.)

 Here's how we might express the recursive rules from earlier as a CFG.



 Here's how we might express the recursive rules from earlier as a CFG.



 Here's how we might express the recursive rules from earlier as a CFG.

```
Expr → int
Expr → Expr Op Expr
Expr \rightarrow (Expr)
\mathbf{Op} \rightarrow \mathbf{+}
```

```
Expr Op Expr

⇒ Expr Op int

⇒ int Op int

⇒ int / int

These red symbols are called nonterminals.

They're placeholders that
```

get expanded later on.

 Here's how we might express the recursive rules from earlier as a CFG.

```
Expr → int
Expr → Expr Op Expr
Expr \rightarrow (Expr)
\mathbf{Op} \rightarrow \mathbf{+}
```

```
Expr

⇒ Expr Op Expr

⇒ Expr Op int

⇒ int Op int

⇒ int / int}
```

The symbols in blue monospace are terminals. They're the final characters used in the string and never get replaced.

Context-Free Grammars

- Formally, a context-free grammar is a collection of four items:
 - a set of nonterminal symbols (also called variables),
 - a set of terminal symbols (the alphabet of the CFG),
 - a set of *production rules* saying how each nonterminal can be replaced by a string of terminals and nonterminals, and
 - a *start symbol* (which must be a nonterminal) that begins the derivation. By convention, the start symbol is the one on the left-hand side of the first production.

```
Expr \rightarrow int

Expr \rightarrow Expr Op Expr

Expr \rightarrow (Expr)

Op \rightarrow +

Op \rightarrow -

Op \rightarrow ×

Op \rightarrow /
```

Some CFG Notation

- In today's slides, capital letters in **Bold Red Uppercase** will represent nonterminals.
 - e.g. **A**, **B**, **C**, **D**
- Lowercase letters in **blue monospace** will represent terminals.
 - e.g. t, u, v, w
- Lowercase Greek letters in *gray italics* will represent arbitrary strings of terminals and nonterminals.
 - e.g. α, γ, ω
- You don't need to use these conventions on your own; just make sure whatever you do is readable.

A Notational Shorthand

```
Expr \rightarrow int | Expr Op Expr | (Expr)
Op \rightarrow + | - | \times | /
```

Derivations

```
Expr
\Rightarrow Expr Op Expr
\Rightarrow Expr Op (Expr)
⇒ Expr Op (Expr Op Expr)
\Rightarrow Expr \times (Expr Op Expr)
\Rightarrow int \times (Expr Op Expr)
⇒ int × (int Op Expr)
⇒ int × (int Op int)
\Rightarrow int \times (int + int)
```

- A sequence of zero or more steps where nonterminals are replaced by the right-hand side of a production is called a *derivation*.
- If string α derives string ω , we write $\alpha \Rightarrow^* \omega$.
- In the example on the left, we see that

```
\mathbf{Expr} \Rightarrow^* \mathbf{int} \times (\mathbf{int} + \mathbf{int}).
```

```
Expr \rightarrow int | Expr Op Expr | (Expr)
Op \rightarrow + | - | \times | /
```

The Language of a Grammar

• If G is a CFG with alphabet Σ and start symbol S, then the *language of* G is the set

$$\mathcal{L}(G) = \{ \boldsymbol{\omega} \in \Sigma^* \mid \mathbf{S} \Rightarrow^* \boldsymbol{\omega} \}$$

• That is, $\mathcal{L}(G)$ is the set of strings of terminals derivable from the start symbol.

If G is a CFG with alphabet Σ and start symbol S, then the *language of* G is the set

$$\mathcal{L}(G) = \{ \boldsymbol{\omega} \in \Sigma^* \mid \mathbf{S} \Rightarrow^* \boldsymbol{\omega} \}$$

Consider the following CFG G over $\Sigma = \{a, b, c, d\}$:

$$Q \rightarrow Qa \mid dH$$

 $H \rightarrow bHb \mid c$

Which of the following strings are in $\mathcal{L}(G)$?

dca dc cad bcb dHaa

Answer at https://cs103.stanford.edu/pollev

Context-Free Languages

- A language L is called a **context-free** language (or CFL) if there is a CFG G such that $L = \mathcal{L}(G)$.
- Questions:
 - How are context-free and regular languages related?
 - How do we design context-free grammars for context-free languages?

CFGs and Regular Expressions

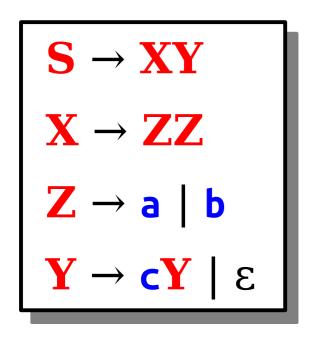
- CFGs consist purely of production rules of the form $A \rightarrow \omega$. They do not have the regular expression operators * or U.
- You can use the symbols * and ∪ if you'd like in a CFG, but they just stand for themselves.
- Consider this CFG G:

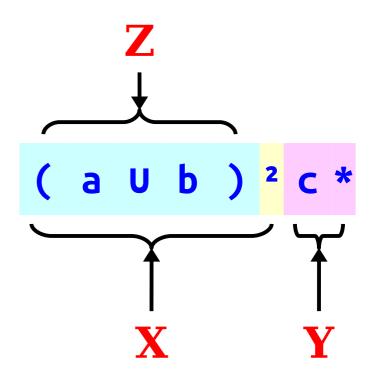
$$S \rightarrow a*b$$

• Here, $\mathcal{L}(G) = \{a*b\}$ and has cardinality one. That is, $\mathcal{L}(G) \neq \{a^nb \mid n \in \mathbb{N} \}$.

CFGs and Regular Expressions

- *Theorem:* Every regular language is context-free.
- **Proof idea:** Show how to convert an arbitrary regular expression into a context-free grammar.





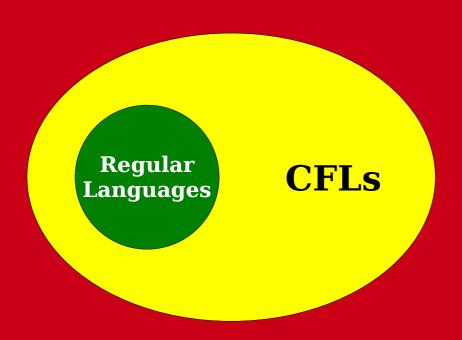
The Language of a Grammar

• Consider the following CFG *G*:

$$S \rightarrow aSb \mid \varepsilon$$

What strings can this generate?

a a a b b b
$$\mathcal{L}(G) = \{ a^n b^n \mid n \in \mathbb{N} \}$$



Why the Extra Power?

- Why do CFGs have more power than regular expressions?
- *Intuition:* Derivations of strings have unbounded "memory."

$$S \rightarrow aSb \mid \varepsilon$$

a a a b b b

Time-Out for Announcements!

Problem Set Seven

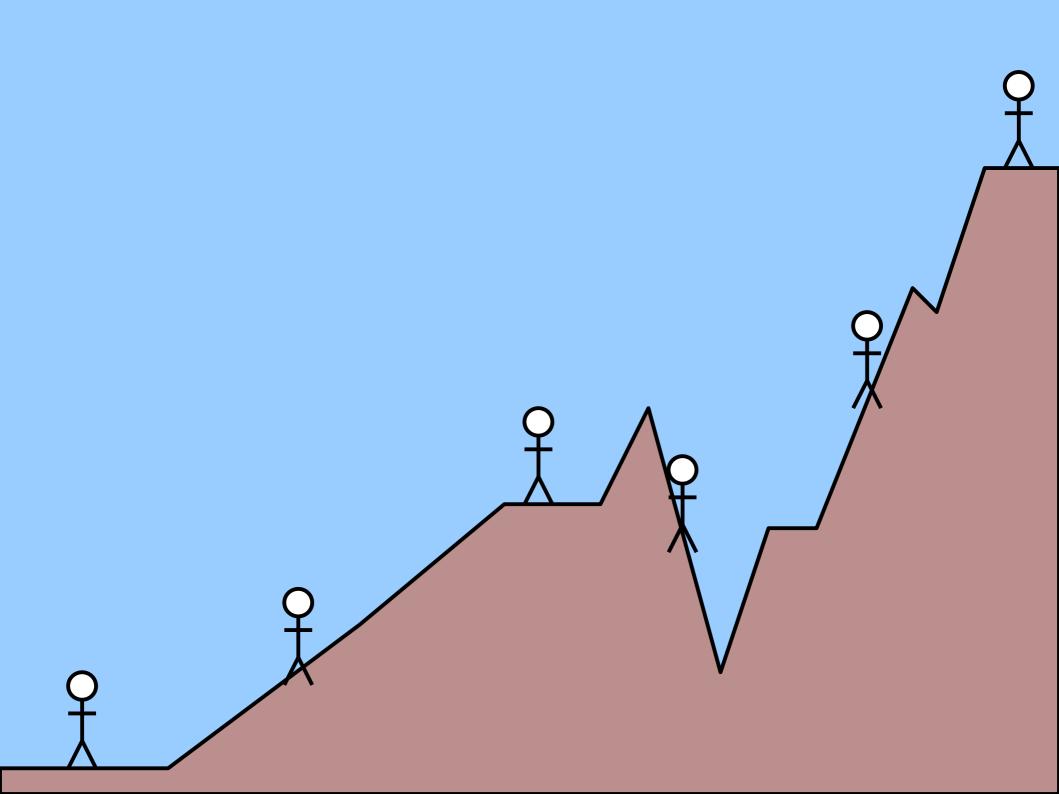
- Problem Set Six was due today at 1:00PM.
 - You can extend the deadline to Saturday at 1:00PM using a late day.
- Problem Set Seven goes out today. It's due next Friday at 1:00PM.
 - It's all about regular expressions, properties of regular languages, and gives a first glimpse at nonregular languages.
 - We've tuned the length given that you have a midterm next Monday.

Second Midterm Logistics

- Our second midterm exam is next *Monday*, *November 11th* from *7PM 10PM*. Check the website for your seating assignment; note that it has changed since the first midterm.
- Topic coverage is primarily lectures 06 13 (functions through induction) and PS3 PS5. Finite automata and onward won't be tested here.
 - Because the material is cumulative, topics from PS1 PS2 and Lectures 00 05 are also fair game.
- The exam is closed-book and closed-computer. You can bring one double-sided $8.5" \times 11"$ sheet of notes with you.
- Students with OAE accommodations: you should have heard from us with alternate exam locations. If you haven't, contact us ASAP.

Our Advice

- Stay fed and rested. You are not a brain in a jar. You are a rich, complex, beautiful human being. Please take care of yourself.
- **Read all questions before diving into them.**You don't have to go sequentially. Read over each problem so you know what to expect, then pick whichever one looks easiest and start there.
- **Reflect on how far you've come.** How many of these questions would you have been able to *understand* two months ago? That's the mark that you're learning something!



Three Questions

- What's something you know now that, at the start of the quarter, you knew you didn't know?
- What's something you know now that, at the start of the quarter, you didn't know you didn't know?
- What's something you don't know now that, at the start of the quarter, you didn't know you didn't know?

Back to CS103!

- Like designing DFAs, NFAs, and regular expressions, designing CFGs is a craft.
- When thinking about CFGs:
 - *Think recursively:* Build up bigger structures from smaller ones.
 - *Have a construction plan:* Know in what order you will build up the string.
 - Store information in nonterminals: Have each nonterminal correspond to some useful piece of information.
- Check our online "Guide to CFGs" for more information about CFG design.
- We'll hit the highlights in the rest of this lecture.

- Let $\Sigma = \{a, b\}$ and let $L = \{w \in \Sigma^* \mid w \text{ is a palindrome }\}$
- We can design a CFG for *L* by thinking inductively:
 - Base case: ε, a, and b are palindromes.
 - If ω is a palindrome, then $a\omega a$ and $b\omega b$ are palindromes.
 - No other strings are palindromes.

$$S \rightarrow \epsilon \mid a \mid b \mid aSa \mid bSb$$

- Let $\Sigma = \{\{,\}\}$ and let $L = \{w \in \Sigma^* \mid w \text{ is a string of balanced braces }\}$
- Some sample strings in *L*:

```
{{{}}}
{{}}}
{{{{}}}}
{{{{}}}}
{{{{}}}}
{{{{}}}}
```

- Let $\Sigma = \{\{,\}\}$ and let $L = \{w \in \Sigma^* \mid w \text{ is a string of balanced braces }\}$
- Let's think about this recursively.
 - Base case: the empty string is a string of balanced braces.
 - Recursive step: Look at the closing brace that matches the first open brace.

- Let $\Sigma = \{\{,\}\}$ and let $L = \{w \in \Sigma^* \mid w \text{ is a string of balanced braces }\}$
- Let's think about this recursively.
 - Base case: the empty string is a string of balanced braces.
 - Recursive step: Look at the closing brace that matches the first open brace. Removing the first brace and the matching brace forms two new strings of balanced braces.

$$S \to \{S\}S \mid \epsilon$$

• Let $\Sigma = \{a, b\}$ and let $L = \{w \in \Sigma^* \mid w \text{ has the same number of a's and b's }\}$

Which of these CFGs have language *L*?

$$S \rightarrow aSb \mid bSa \mid \epsilon$$

$$S \rightarrow abS \mid baS \mid \epsilon$$

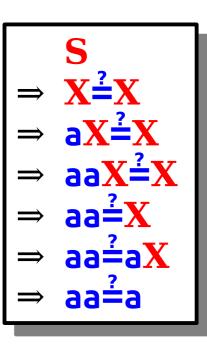
Answer at https://cs103.stanford.edu/pollev

Designing CFGs: A Caveat

- When designing a CFG for a language, make sure that it
 - generates all the strings in the language and
 - never generates a string outside the language.
- The first of these can be tricky make sure to test your grammars!
- You'll design your own CFG for this language on Problem Set 8.

- When designing CFGs, remember that each nonterminal can be expanded out independently of the others.
- Let $\Sigma = \{a, \stackrel{?}{=}\}$ and let $L = \{a^n \stackrel{?}{=} a^n \mid n \in \mathbb{N} \}$.
- Is the following a CFG for *L*?

$$S \rightarrow X \stackrel{?}{=} X$$
 $X \rightarrow aX \mid \epsilon$



Finding a Build Order

- Let $\Sigma = \{a, \stackrel{?}{=}\}$ and let $L = \{a^n \stackrel{?}{=} a^n \mid n \in \mathbb{N} \}$.
- To build a CFG for *L*, we need to be more clever with how we construct the string.
 - If we build the strings of a's independently of one another, then we can't enforce that they have the same length.
 - *Idea*: Build both strings of a's at the same time.
- Here's one possible grammar based on that idea:

$$S \rightarrow \frac{?}{} | aSa$$

Summary of CFG Design Tips

- Look for recursive structures where they exist: they can help guide you toward a solution.
- Keep the build order in mind often, you'll build two totally different parts of the string concurrently.
 - Usually, those parts are built in opposite directions: one's built left-to-right, the other right-to-left.
- Use different nonterminals to represent different structures.

CFGs for Programming Languages

```
BLOCK \rightarrow STMT
            { STMTS }
STMTS \rightarrow \epsilon
           STMT STMTS
         \rightarrow EXPR;
STMT
           if (EXPR) BLOCK
           while (EXPR) BLOCK
            do BLOCK while (EXPR);
            BLOCK
EXPR
         → identifier
            constant
            EXPR + EXPR
            EXPR - EXPR
            EXPR * EXPR
```

Grammars in Compilers

- One of the key steps in a compiler is figuring out what a program "means."
- This is usually done by defining a grammar showing the high-level structure of a programming language.
- There are certain classes of grammars (LL(1) grammars, LR(1) grammars, LALR(1) grammars, etc.) for which it's easy to figure out how a particular string was derived.
- Tools like yacc or bison automatically generate parsers from these grammars.
- Curious to learn more? *Take CS143!*

Natural Language Processing

- By building context-free grammars for actual languages and applying statistical inference, it's possible for a computer to recover the likely meaning of a sentence.
 - In fact, CFGs were first called *phrase-structure grammars* and were introduced by Noam Chomsky in his seminal work *Syntactic Structures*.
 - They were then adapted for use in the context of programming languages, where they were called *Backus-Naur forms*.
- The **Stanford Parser** project is one place to look for an example of this.
- Want to learn more? Take CS124 or CS224N!

Next Time

- No class Monday.
- Then, when we get back...
 - Turing Machines
 - What does a computer with unbounded memory look like?
 - How would you program it?